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Spatiotemporal correlations of the two-dimensional �2D� spring-block �Burridge-Knopoff� models of earth-
quakes with the long-range interblock interactions are extensively studied by means of numerical computer
simulations. The long-range interaction derived from an elastic theory, which takes account of the effect of the
elastic body adjacent to the fault plane, falls off with distance r as 1 /r3. Comparison is made with the
properties of the corresponding short-range models studied earlier. Seismic spatiotemporal correlations of the
long-range models generally tend to be weaker than those of the short-range models. The magnitude distribu-
tion exhibits a “near-critical” behavior, i.e., a power-law-like behavior close to the Gutenberg-Richter law, for
a wide parameter range with its B-value, B�0.55, insensitive to the model parameters, in sharp contrast to that
of the 2D short-range model and those of the 1D short-range and long-range models where such a near-critical
behavior is realized only by fine tuning the model parameters. In contrast to the short-range case, the mean
stress drop at a seismic event of the long-range model is nearly independent of its magnitude, consistent with
the observation. Large events often accompany foreshocks together with a doughnutlike quiescence as their
precursors, while they hardly accompany aftershocks with almost negligible seismic correlations observed after
the main shock.
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I. INTRODUCTION

An earthquake is a stick-slip dynamical instability of a
preexisting fault driven by the motion of a tectonic plate
�1,2�. While an earthquake is a complex phenomenon, cer-
tain empirical laws such as the Gutenberg-Richter �GR� law
and the Omori law concerning its statistical properties are
known to hold. Understanding the origin of such statistical
properties of earthquakes is one of the important issues left
in earthquake studies. As a useful tool in such studies, many
researchers have used the so-called spring-block model origi-
nally proposed by Burridge and Knopoff �BK� �3�. In this
model, an earthquake fault is simulated by an assembly of
blocks, each of which is connected via the elastic springs to
the neighboring blocks and to the moving plate. All blocks
are subject to the friction force, the source of the nonlinearity
in the model, which eventually realizes an earthquakelike
frictional instability. While the spring-block model is obvi-
ously a crude model to represent a real earthquake fault, its
simplicity enables one to study its statistical properties with
high precision.

Carlson, Langer, and others �4–9� studied the statistical
properties of the one-dimensional �1D� and 2D BK models
quite extensively, paying particular attention to the magni-
tude distribution of earthquake events. The spring-block
model has also been extended in several ways, e.g., taking
account of the effect of viscosity �10–12�, modifying the
form of the friction force �10,12,13�, driving the system only
at one end of the system �14�, or by incorporating the rate-
and state-dependent friction law �15�. The present authors
studied in the previous papers the statistical properties of the
1D and 2D BK models, focusing on their spatiotemporal
correlations �16–18�. These studies have revealed several in-
teresting features of the 1D and 2D BK models.

Meanwhile, the BK models studied in most of the previ-
ous works assumed that the interblock interaction works only

between nearest-neighboring blocks. This corresponds to the
situation where a thin isolated plate is subject to the friction
force and is driven by shear force �19�. However, a real fault
is not necessarily a thin isolated plate, and the elastic body
extends in a direction away from the fault plane. Considering
the effect of such an extended elastic body adjacent to the
fault plane amounts to considering the effective interblock
interaction to be long ranged. In order to make the model
more realistic, it is important to take account of effect of the
long-range interaction, together with the effect of the dimen-
sionality of the fault. In this connection, we note that, in the
study of thermodynamic phase transition in equilibrium, it
has been well known that the spatial dimensionality and the
range of the interaction are major elements affecting the uni-
versality class of the transition.

Hence, in the present paper, we study the statistical prop-
erties of the 2D BK model with the long-range interblock
interaction derived from an elastic theory, in comparison
with those of the BK models with the short-range �nearest-
neighbor� interactions studied earlier, in order to obtain in-
formation how the long-range nature of the interaction, ex-
pected to arise from the elastic properties of the crust
adjacent to the fault plane, affects the statistical properties of
earthquakes.

We assume that the 3D elastic body, where the 2D BK
models with the long-range interaction is supposed to lie, are
isotropic, homogeneous, and infinite. A fault surface is as-
sumed to be a plane lying in this elastic body and to slip
along one direction only. As a further simplification, we
adopt a static approximation for an elastic equation of mo-
tion describing the elastic body. This assumption is justified
when the velocity of the seismic-wave propagation is high
enough compared with the velocity of the seismic-rupture
propagation. As shown in Appendix A, these assumptions
give rise to a spring constant between blocks decaying with
their distance r as 1 /r3.
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Certain properties of the BK model with the long-range
interaction, or the BK model extended in the direction or-
thogonal to the fault plane, were already studied. These in-
clude the 2D BK model extended in the direction orthogonal
to the fault plane �20�, the 2D cellular automaton version of
the BK model with the long-range interaction decaying as
1 /r3 �21�. In particular, Xia et al. recently studied the 1D BK
model with a variable range interaction where a block is
connected to its R neighbors with a rescaled spring constant
proportional to 1 /R �22,23�. The type of the long-range
model considered by Xia et al. may be regarded as a mean-
field type, since the model reduces to the mean-field infinite-
range model in the R→� limit.

In the present paper, we extend our previous studies on
the spatiotemporal correlation properties of the short-range
BK models �16–18�, we investigate the spatiotemporal cor-
relation properties of the 2D BK model with the long-range
power-law interaction derived from an elastic theory which
is expected to capture the effect of the elastic body adjacent
to the fault plane. Our work can also be regarded as an ex-
tension of the recent work of Xia et al. �22,23�: First, we
extend the model dimensionality from 1D to more realistic
2D. Second, we consider the long-range interaction derived
from an elastic theory, decaying as a power law with dis-
tance, which is different from the mean-field-type long-range
interaction considered in Refs. �22,23�. Third, we calculate
various spatiotemporal correlation functions to further exam-
ine the properties of seismicity under the influence of the
long-range interaction. In view of the situation that many of
the previous works on the BK model were performed for the
1D model, however, we also perform for comparison a simi-
lar numerical analysis complementally for the 1D BK model
with the long-range power-law interaction.

The present paper is organized as follows. In Sec. II, we
introduce the model and explain some of the details of our
numerical simulation. The results of our simulations on the
2D BK model with the long-range interactions are presented
in Sec. III. We show the results of the event-size distribution,
the mean displacement, the mean number of failed blocks,
and the mean stress drop at a seismic event, together with
various types of spatiotemporal correlation functions of seis-
mic events, including the local recurrence-time distribution,
the seismic time-correlation function before and after the
main shock, the time development of the seismic space-
correlation function before and after the main shock, and the
time development of the magnitude distribution function be-
fore the main shock. The derivation of the long-range inter-
block interaction from an elastic theory is given in Appendix
A. The results of our calculation on the 1D BK model with
the long-range power-law interaction is also presented in Ap-
pendix B. Finally, Sec. IV is devoted to summary and dis-
cussion.

II. THE MODEL AND THE METHOD

First, we describe the 2D BK model with the nearest-
neighbor interaction. The 2D BK model represents a “fault
plane” by an assembly of blocks, which is taken to be an x
−z plane consisting of a 2D square array of blocks contain-

ing Nx blocks in the x direction and Nz blocks in the z direc-
tion. All blocks are assumed to move only in the x direction
along strike, and are subject to the friction force �. Each
block is connected with its four nearest-neighbor blocks via
the springs of the elastic constant kc, and is also connected to
the moving plate via the spring of the elastic constant kp.

In the simplest case where the interaction works only be-
tween the nearest-neighbor blocks in a spatially isotropic
manner, the equation of motion of the block at site �i , j� is
given by

mÜi,j = kp���t� − Ui,j�

+ kc�Ui+1,j + Ui,j+1 + Ui−1,j + Ui,j−1 − 4Ui,j�

− ��U̇i,j� , �1�

where m is the mass of a block, t� is the time, Ui,j is the
displacement along the x direction of the block at site �i , j�,
and �� is the loading rate representing the speed of the plate.
The equation is made dimensionless in the same way as in
�17�, i.e., the time t� is measured in units of the characteristic
frequency �=�kp /m and the displacement Ui,j in units of the
length L=��0� /kp, ��0� being a static friction. Then, the
equation of motion can be written in the dimensionless form
as

üi = �t − ui,j + l2�ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j� − ��u̇i� ,

�2�

where t= t�� is the dimensionless time, ui,j �Ui,j /L is the
dimensionless displacement of the block �i , j�, l��kc /kp is
the dimensionless stiffness parameter, �=�� / �L�� is the di-

mensionless loading rate, and ��u̇i����U̇i� /��0� is the di-
mensionless friction force.

The nearest-neighbor model mentioned above neglects the
effect of the elastic body in a direction away from the fault.
As shown in Appendix A, taking account of this effect
amounts to taking the interblock interaction to be long
ranged. The interaction between the two blocks at sites �i , j�
and �i� , j�� is given in the dimensionless form by

�lx
2 	i� − i	2

r5 + lz
2 	j� − j	2

r5 
�ui�,j� − ui,j� , �3�

which falls off with distance r as 1 /r3. Then, the equation of
motion of the 2D long range can be written as

üi,j = �t − ui,j + �
�i�,j����i,j�

�lx
2 	i� − i	2

r5 + lz
2 	j� − j	2

r5 
�ui�,j� − ui,j�

− ��u̇i,j� . �4�

If one restricts the range of interaction to nearest neighbors
and takes the spatially anisotropic spring constant to be iso-
tropic, lx= lz= l, one recovers the isotropic nearest-neighbor
model described by Eq. �2�.

The “isotropy” assumption lx= lz is equivalent to putting
the Lame’s constant to vanish, �=0. In fact, the possible
effect of such spatial anisotropy of the 2D BK model was
studied within the nearest-neighbor interaction in our previ-
ous paper �18�. It was observed that the property of the an-
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isotropic model was close to the corresponding isotropic
model characterized by the mean spring constant l= �lx
+ lz� /2 so that the spatial anisotropy did not cause any quali-
tative new feature on the statistical properties of the model.
Thus, in the present paper, we put lx= lz= l for simplicity. The
investigation of the recurrence-time distribution of the aniso-
tropic model with lx� lz was recently made in Ref. �24�
within the nearest-neighbor interaction.

In the present paper, we also discuss in Appendix B the
properties of the 1D BK model with the long-range interac-
tion, to clarify the role of the model dimensionality and to
make comparison with the previous works on the various 1D
BK models. We derive the 1D BK model with the long-range
interaction from the corresponding 2D model by imposing
the constraint that the systems is completely rigid along the z
direction corresponding to the depth direction, i.e., u�x ,z , t�
=u�x , t�. As shown in Appendix A, this yields an effective
interblock interaction decaying with distance r as 1 /r2,

l2 1

	i − i�	2
�ui� − ui� . �5�

Then, the equation of motion of the 1D BK model may be
given in the dimensionless form by

üi = �t − ui + l2 �
i��i

ui� − ui

	i − i�	2
− ��u̇i,j� . �6�

As the form of the friction force �, we use a simple
velocity-weakening friction force which is a single-valued
function of the velocity. As its explicit functional form, we
use the form introduced by Carlson and Langer �6�,

��u̇� = ��− � ,1� , for u̇ � 0,

1 − 	

1 + 2
u̇/�1 − 	�
, for u̇ � 0,

�7�

where the friction force immediately drops to 1−	 on slid-
ing, and decays toward zero with a rate proportional to the
parameter 
 as the velocity increases. The back slip is inhib-
ited by imposing an infinitely large friction for u̇i�0, i.e.,
��u̇�0�=−�. This friction force represents the velocity-
weakening friction force. Although real friction force is of
course more complex, not depending on the velocity alone
�1�, we use the friction force �7� for simplicity.

The friction force is characterized by the two parameters,
	 and 
. The former, 	, represents an instantaneous drop of
the friction force at the onset of the slip, while the latter, 
,
represents the rate of the friction force becoming weaker on
increasing the sliding velocity. The 
=0 case represents the
simplest Coulomb friction law where the friction force in-
stantaneously drops from the static value 1 to its dynamical
value 1−	 as soon as the block begins to slide, and is kept
constant on sliding irrespective of the velocity. The 
=�
case also corresponds to another Coulomb friction law where
the dynamical friction immediately drops to zero on sliding.
In addition to these frictional parameters, the model pos-
sesses one more material parameter, an elastic parameter l.

In the present paper, we try to cover a rather wide range
of the parameter 
 in the range 
= �0, � �, and systematically
examine the 
 dependence of the results.

We also assume the loading rate � to be infinitesimally
small, and put �=0 during an earthquake event, a very good
approximation for real faults �6�. Taking this limit ensures
that the interval time during successive earthquake events
can be measured in units of �−1 irrespective of particular
values of �.

A seismic event begins when the accumulated stress ex-
ceeds a static friction at one of the blocks in the system. Due
to the effect of nonzero 	, the block begins to move with a
finite acceleration, which may �or may not� propagate to the
neighboring blocks. The succession of such propagating mo-
tion of blocks is regarded as a seismic event. The event is
terminated when all blocks in the system come to rest again.
The displacement of each block at an event is measured by
the displacement of that block during the beginning and the
end of this event. The condition of an infinitesimal � guar-
antees that no other event is triggered elsewhere in the sys-
tem during the ongoing event.

Numerical details are the same as in �17�. We solve the
equation of motion �4� or �6� by using the Runge-Kutta
method of the fourth order, the width of the time discretiza-
tion t being t=10−3 in most cases. The long-range inter-
action is summed over all blocks contained in the system.
Total number of 105–107 events are generated in each run,
which are used to perform various averagings. The initial
position of each block ui�0� is generated randomly according
to the uniform distribution in the interval �0,0.02�, with the
zero initial velocity u̇i�0�=0. In calculating the observables,
initial 105 events are discarded as transients. We judge
whether the system reaches a stationary state by monitoring
the stability of the magnitude distribution function �to be
defined in detail below�.

In the 2D BK model, we follow �8� and impose periodic
boundary condition in the x direction and free boundary con-
dition in the z direction, regarding the z direction as the depth
direction. For the most part of our calculation, the system
size is taken to be Nx=160 and Nz=80 �or Nx=60 and Nz
=60�. In the 1D BK model studied in Appendix B, we im-
pose periodic boundary condition.

III. THE SIMULATION RESULTS

In this section, we show the results of our numerical
simulations on the 2D BK model with the long-range inter-
action for various observables.

A. The magnitude distribution

We define the magnitude of an event of the 2D BK model,
�, as a logarithm of its moment M,

� = ln M = ln��
i,j

ui,j
 , �8�

where ui,j is the total displacement during an event of the
block at site �i , j� and the sum is taken over all blocks in-
volved in the event.
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Figures 1�a� and 1�b� exhibit the computed magnitude dis-
tribution function R��� for smaller and larger values of 
,
i.e., �a� 0�
�10 and �b� 10�
��. The magnitude distri-
bution R���d� represents the rate of events with their mag-
nitudes in the range �� ,�+d��. In the range 
�1, only
small events of ��2 occur. As can be seen from Fig. 1�a�,
R��� for smaller 
�1 exhibits a near straight-line “near-
critical” behavior over a certain magnitude range, and drops
off sharply at larger magnitudes. The associated B value is
estimated in the range 0�
�1 to be B�0.59 from the
slope of this straight line, which is rather insensitive to the
change of the 
 value. Of course, the observed behavior
cannot be regarded as truly critical, since R��� drops off
sharply beyond the threshold magnitude.

At 
�2, large earthquakes of their magnitudes ��8
suddenly appear, while earthquakes of intermediate magni-
tudes, say, 2���6, remain rather scarce. It means that
large and small earthquakes are well separated at 
�2. Such
a sudden appearance of large earthquakes at 
=
c1�2 co-
existing with smaller ones has a feature of “discontinuous
transition.” This feature is common to the case of the corre-
sponding 2D short-range model �18�. On increasing 
 fur-
ther, earthquakes of intermediate magnitudes gradually in-
crease their frequency. In the range of 2�
�20, R���
exhibits a “supercritical” behavior, i.e., exhibits a pro-
nounced peak structure at a larger magnitude deviating from
the GR law, while it still exhibits a near straight-line behav-
ior corresponding to the GR law at smaller magnitudes. The

existence of a distinct peak structure at a larger magnitude
suggests that large earthquakes are more or less characteris-
tic. Such a behavior of R��� is sometimes called “supercriti-
cal,” since R��� bends up at larger magnitudes �though it
eventually falls off at still larger magnitudes�.

As 
 increases further, a characteristic peak becomes less
pronounced and eventually vanishes at around 
�25. R���
exhibits again a near straight-line near-critical behavior over
a wide magnitude range: See Fig. 1�b�. At 
=
c2�25, the
associated B-value estimated from the slope of this straight
line is B�0.55. The change from the supercritical to the
near-critical behaviors at 
=
c2�25 is continuous, in con-
trast to the discontinuous one observed at 
=
c1�2. A very
interesting observation here is that such a straight-line near-
critical behavior persists even if 
 is further increased up to

=�, and that the associated B value is robust against the
change of 
. It should be noticed that this straight-line be-
havior of R��� cannot be regarded as a truly critical one,
since R��� drops off sharply at very large magnitudes. This
sharp falloff of R��� observed at larger magnitudes ��5 is
not a finite-size effect, as can clearly be seen from Fig. 2.

Such a near-critical behavior realized over a wide param-
eter range 
�25 is in sharp contrast to the behavior of the
corresponding short-range model where R��� at larger 

�
c2 exhibits a down-bending “subcritical” behavior, while
a straight-line near-critical behavior is realized only by fine
tuning the 
 value to a special value 
�
c2. The robustness
of the near-critical behavior of R��� observed in the 2D
long-range model might have an important relevance to real
seismicity.

In order to further illustrate the difference between the
long-range and the short-range models, we compare in Fig. 3
R��� of the long-range and the short-range models. Figure
3�a� represents the case of 
=10 in the supercritical regime

c1�
�
c2, while Fig. 3�b� represents the case of 
=30 in
the near-critical regime 
�
c2. As can be seen from the
figures, R��� of the long-range model exhibits much more
pronounced straight-line behavior mimicking the GR law
over a wider magnitude range, as compared with R��� of the
short-range model.

In Fig. 4, we summarize the behavior of R��� in the form
of a “phase diagram” in the frictional-parameter 
 versus the
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FIG. 1. �Color online� The magnitude distribution R��� of earth-
quake events of the 2D long-range BK model for the parameters l
=3 and 	=0.01. �a� represents R��� for smaller values of the fric-
tional parameter 0�
�10, while �b� represents R��� for larger
values of the frictional parameter 10�
��. The system size is
60�60.
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FIG. 2. �Color online� The system-size dependence of the mag-
nitude distribution R��� of earthquake events of the 2D long-range
BK model for the parameters 
=30, l=3, and 	=0.01. A sharp
falloff observed at larger magnitudes ��5 is not a finite-size effect.
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elastic-parameter l plane for the case of 	=0.01. As can be
seen from the figure, the phase diagram of the long-range
model consists of three distinct regimes, two of which are
near-critical regimes and one is a supercritical regime. The
“phase boundary” between the smaller-
 near-critical regime

and the supercritical regime represents a “discontinuous tran-
sition,” while the one between the larger-
 near-critical re-
gime and the supercritical regime represents a “continuous
transition.” The “transition” between these different
“phases,” i.e., a near-critical phase for small 
, a supercriti-
cal phase for intermediate 
, and another near-critical phase
for large 
, is primarily dictated by the 
 value. Since the
phase boundary in Fig. 4 has a finite slope in the 
-l plane,
one can also induce the near-critical to supercritical transi-
tion by increasing the l value for a fixed 
.

For comparison, we also show in Fig. 4 the corresponding
phase boundary of the short-range model reported in Ref.
�18�. As can be seen from the figure, the phase diagram of
both the long-range and the short-range models are qualita-
tively similar. The near-critical phases in the long-range
model are replaced by the subcritical phases in the short-
range model, and the phase boundaries of the long-range
model tend to shift to larger values of 
 and to smaller val-
ues of l.

B. The mean displacement, the mean number of failed blocks,
and the mean stress drop

The size of an earthquake event is usually measured by its
magnitude. Other possible measures of event size might be
the mean displacement ū, the mean number of failed-

blocks N̄b �corresponding to the size of rupture zone�, and
the mean stress-drop �̄. In Figs. 5�a� and 5�b�, we show the
magnitude dependence of the mean displacement and of the
mean number of failed blocks for various values of 
. An
interesting observation is that the data in the near-critical
regimes are grouped into two distinct branches, each corre-
sponding to the small-
 and large-
 near-critical regions of
Fig. 4.

As can be seen from Fig. 5�a�, the data in the small-

near-critical regime �
�
c1�2� lacks events of larger mag-
nitudes and are characterized by smaller displacement, while
those in the large-
 near-critical regime �
�
c2�25� are
characterized by much larger displacement. All the data of
the mean displacement ū in the near-critical regimes col-
lapse, at least approximately, onto these two curves, which
are both linear in the magnitude with a common slope
�0.01. Note that this slope is very small, indicating that the
mean stress drop in the near-critical regime hardly depends
on the event magnitude. This slope is also an order of mag-
nitude smaller than the corresponding slope observed in the
2D short-range BK model, which was estimated to be about
0.1 �18�.

By contrast, the data in the supercritical regime �
c1�

�
c2� exhibit a significantly different behavior. At smaller
magnitudes ��5, they exhibit a crossover behavior depend-
ing on its 
 value between the two universal near-critical
curves: For smaller 
 close to 
c1, the data tend to lie closer
to the small-
 near-critical curve, while for larger 
 close to

c2, the data tend to lie closer to the large-
 near-critical
curve. The data in the supercritical regime suffer from sig-
nificant finite-size effects at larger magnitudes ��5. The
system-size N dependence of the data in the near-critical re-
gime 
=30 is shown in the inset of Fig. 5�a�. As can be seen
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FIG. 3. �Color online� Comparison of the magnitude distribution
R��� of earthquake events of the 2D BK models with the long-
range and the short-range interactions. �a� The case of 
=10, �b� the
case of 
=30, with l=3 and 	=0.01 being fixed.
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FIG. 4. �Color online� The phase diagram of the 2D BK models
with the long-range and the short-range interactions in the
frictional-parameter 
 versus elastic-parameter l plane. The param-
eter 	 is set to 	=0.01. To draw a phase diagram, the parameter
range 0�
�� and 1� l�10 is studied by simulations.
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from the inset of Fig. 5�a�, the data at larger magnitudes tend
to level off as the system-size N is increased.

The existence of the two near-critical curves and the
crossover behavior between them are also clearly visible in
Fig. 5�b� for the magnitude dependence of the mean number
of failed-blocks Nb. The two near-critical curves are again

both strikingly linear with a common slope �0.99. The
system-size N dependence is shown in the inset of Fig. 5�b�
for the case of 
=30. As the system size is increased, the
data at larger magnitudes tend to lie closer to a straight line
of a slope �0.99.

In Fig. 5�c�, we show the magnitude dependence of the
mean stress drop for the case of 
=30, with varying the
system size N. Note that, although in the nearest-neighbor
BK model the mean stress drop of an event is essentially
identical with �proportional to� the mean displacement of an
event �18�, such a simple relation between the mean dis-
placement and the mean stress drop does not hold in the
present long-range BK model. Although a significant finite-
size effect is observed, there clearly exists a tendency that
the magnitude dependence becomes less and less for larger
systems. In real seismicity, the mean stress drop is known to
hardly depend on the event magnitude �1�. This suggests that
the long-range nature of the elastic interaction of the crust
might play a role in realizing the near independence of the
stress drop on the event magnitude. We note that a similar
independence was also observed in the mean-field-type 1D
long-range BK model studied by Xia et al. �23�, and also in
the 1D long-range BK model with a power-law interaction
studied in Appendix B.

C. The local recurrence-time distribution

In earthquake prediction, one natural quantity to be inves-
tigated might be the distribution law of the recurrence time
of large earthquakes. Characteristic earthquake recurrence
would mean the existence of characteristic time scales in
earthquake recurrence, while critical earthquake recurrence
would mean the absence of such characteristic time scales.
Here, we study the nature of earthquake recurrence of the 2D
long-range BK model via the local recurrence-time distribu-
tion function.

In Fig. 6, we show on a log-log plot the computed local
recurrence-time distribution function P�T� for the cases of

=10 and 
=30, with fixing l=3 and 	=0.01. Each case
corresponds to the supercritical and the near-critical regimes,
respectively. The local recurrence time T is recorded when
the next event occurs with its epicenter lying within distance
r=5 from the epicenter of the previous event. In the inset, the
same data are replotted on a semilogarithmic scale. The re-

currence time is normalized by its mean T̄, which is T̄�
=31.5 and 9.98 for 
=10 and 30, respectively. As can be
seen from the figure, P�T� exhibits an exponential tail at
longer times for both cases of 
=10 and 30, with and with-
out a peak structure at short times.

In Figs. 7, we show P�T� for various values of the
magnitude-threshold �c, including the case of �c=−� corre-
sponding to no threshold at all �all events�, for the cases of

=10 �a� and of 
=30 �b�. Both in the cases of 
=10 and
30, P�T� robustly exhibits a down-bending behavior for any
choice of �c. In the supercritical case of 
=10, a prominent
peak observed at shorter T for �c=5 tends to be suppressed
as �c is taken smaller. In the near-critical case of 
=30, no
characteristic peak is observed for any choice of �c. The

appearance of the characteristic peak in P�T� at T�0.01T̄ in
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FIG. 5. �Color online� The magnitude dependence of the mean
displacement �a�, the mean number of failed blocks �b�, and the
mean stress drop �c� of each seismic event of the 2D long-range BK
model. In the main panels of �a� and �b�, the frictional-parameter 

is varied with fixing the system size 60�60, while in the insets the
system-size N is varied for the case of 
=30. In �c�, the system-size
dependence of the mean stress drop is shown for the case of 

=30. The parameters l and 	 are fixed to l=3 and 	=0.01.
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the supercritical regime and for larger events is well corre-
lated with the appearance of the characteristic-peak compo-
nent in the magnitude distribution R��� of Fig. 1. The
recurrence-time distribution in real seismicity usually does
not exhibit a characteristic peak �see, e.g., Fig. 5 of Ref.
�30��. Hence, the behavior of P�T� in the near-critical regime
seems closer to that of real seismicity.

While the present results of P�T� turn out to be qualita-
tively similar to those of the 2D short-range model
calculated by the present authors �18�, they differ signifi-
cantly from the recent result of the recurrence-time
�interoccurrence-time� distribution reported by Hasumi for
the 2D short-range BK model �24�. Hasumi reported that the
recurrence-time distribution P�T�, defined globally, exhibits
either a supercritical, subcritical, or critical behavior depend-
ing on the 
 value, which is well correlated with the behav-
ior of the magnitude distribution function R���. Such behav-
iors of P�T�, however, were never observed in our
calculation of the 2D BK model either in the short-range nor
in the long-range case. In order to trace the cause of this
significant deviation from Ref. �24�, we further calculated
the global recurrence-time distribution on exactly the same
2D short-range BK model as studied by Hasumi, imposing
no constraint on the distance between successive events. The
result is shown in Fig. 8. First, we closely follow Ref. �24�
by applying free boundary conditions in both directions on
the lattice of size Nx=25 and Nz=100, assuming the aniso-
tropic elastic parameters lx=�3, lz=1, setting the other pa-
rameter values to 	=0.01 and 
=1.5 or 3.5, and imposing
no magnitude constraint �c=−�. Precisely under these cal-
culational conditions, Hasumi observed a critical straight-
line P�T� for the case of 
=3.5, and a subcritical up-bending
P�T� accompanying a characteristic larger-T peak for the
case of 
=1.5. In sharp contrast to this, we observed here a

subcritical down-bending P�T� for either value of 
: See Fig.
8.

In the case of 
=3.5, we also examined the possible ef-
fect of the boundary conditions and of the anisotropy of the
elastic constants on P�T� by simulating the model under pe-
riodic boundary conditions and with the isotropic elastic con-
stants lx= lz= �lx+ lz� /2, to find that the applied boundary con-
ditions and the anisotropy of the elastic constants hardly
affect the form of P�T� as shown in Fig. 8.

In fact, Hasumi included the rise time of earthquakes in
his definition of the recurrence time, and assumed an ex-
tremely large loading rate, �=10−2 �25�. We believe that his
choice of unrealistically large loading rate, combined with
his definition of the recurrence time, is the cause of the de-
viation between our results and those of Ref. �24�. As is well
known, in real seismicity the loading rate is extremely small,
being of order �=10−8–10−9. Then, with such a realistic
choice of the � value, the recurrence-time distribution P�T�
of the 2D BK model, either local or global, should behave in
the way as reported in the present paper and in Ref. �18�, not
as reported in Ref. �24�, irrespective of whether one includes
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FIG. 6. �Color online� The log-log plot of the local recurrence-
time distribution P�T� of large events of ���c=5 of the 2D long-
range BK model for the frictional-parameter 
=10 and 30, each
corresponding to the “supercritical” and “near-critical” regimes.
The parameters l and 	 are fixed to l=3 and 	=0.01. The system

size is 160�80. The recurrence time T is normalized by its mean T̄,

which is T̄=31.5 and 9.98 for 
=10 and 30, respectively. The insets
represent the semilogarithmic plots including the tail part of the
distribution. The tail part shows an exponential behavior for both
cases of 
=10 and 30.
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FIG. 7. �Color online� The log-log plots of the local recurrence-
time distribution function P�T� of the 2D long-range BK model,
with varying the magnitude-threshold �c for the cases of the
frictional-parameter 
=10 �a� and 
=30 �b�. The insets represent
the semilogarithmic plots including the tail part of the distribution.

The mean recurrence time is T̄�=0.0262,14.3, and 31.5 �respec-

tively, for �c=−� ,0, and 5� for 
=10, and T̄=0.0135, 0.37, and
9.98 �respectively, for �c=−� ,0, and 3� for 
=30.
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the rise-time part of earthquakes in the definition of the re-
currence time or not.

D. Time correlations of events associated with the main shock

In real seismicity, large events often accompany fore-
shocks and aftershocks. In Fig. 9, we show the time correla-
tion function between large events �main shock� and events
of arbitrary sizes, dominated in number by small events, for
various values of the frictional-parameter 
, with fixing l
=3 and 	=0.01. In the figure, we plot the mean number of
events of arbitrary sizes occurring within 5 blocks from the
epicenter of the main shock before �t�0� and after �t�0�
the main shock, where the occurrence of the main shock is
taken to be the origin of the time t=0. The average is taken
over all large events of their magnitudes of ���c=5. The
number of events are counted here with the time bin of
t�=0.02.

As can be seen from Fig. 9, a remarkable acceleration of
seismic activity occurs before the main shock �t�0� for 

=10 corresponding to the supercritical regime, while, for 

=30 corresponding to the near-critical regime, the time cor-
relation is almost absent except for the suppression of seis-
micity immediately before the main shock. The behavior of
the time-correlation function of the 2D long-range model
turns out to be similar to those of the corresponding 2D
short-range model �18�.

E. Spatial correlations of events before the main shock

In this section, we examine the time development of spa-
tial seismic correlations before the main shock of ���c=5.
In Figs. 10, we show the spatial seismic correlation functions
between the main shock and the preceding events of arbitrary
size, dominated in number by small events, for several time
periods before the main shock, with fixing l=3 and 	=0.01.
Figures 10�a� and 10�b� represent the cases of 
=10 in the
supercritical regime and of 
=30 in the near-critical regime,
respectively. Insets represent shorter-time behaviors.

As can be seen from Fig. 10�a�, for 
=10, the frequency
of small events are enhanced preceding the main shock at
and around the epicenter of the upcoming main shock. For
small enough t, such a cluster of smaller events correlated
with the large event may be regarded as foreshocks. Just
before the main shock, the frequency of smaller events is
suppressed in a close vicinity of the upcoming main shock,
while it continues to be enhanced in the surrounding blocks,
a phenomenon closely resembling the “Mogi doughnut”
�1,26,27�. The spatial range where the quiescence occurs is
narrow, only of a few blocks.

For 
=30, as can be seen from Fig. 10�b�, the seismic
acceleration preceding the main shock is hardly discernible,
while the doughnutlike quiescence is still realized. We note
that the quiescence just before the main shock is robustly
observed in the BK model, independent of its dimensionality,
the interaction range and the parameter values. Indeed, it has
been observed both in 1D and 2D, both with the short-range
and long-range interactions �16,17�.

F. Spatial correlations of events after the main shock

In this section, we examine the time development of spa-
tial seismic correlations after the main shock of ���c=5.
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FIG. 8. �Color online� The log-log plot of the global recurrence-
time distribution function P�T� of the 2D short-range BK model.
No constraint is imposed on the magnitude threshold, i.e., �c=−�.
The system size is Nx=25 and Nz=100. The cases of 
=1.5 and
3.5, with lx=�3, lz=1, 	=0.01, and with free boundary conditions
applied both in x and z directions, precisely correspond to the cases

studied in Ref. �24�. In these cases, we obtain T̄�=0.48 for 
=3.5,

and T̄�=1.70 for 
=1.5. In the case of 
=3.5, the data taken under
periodic boundary conditions applied in both x and z directions as
well as the data taken for the isotropic elastic couplings lx= lz= �1
+�3� /2, are also given. In the former case, we obtain T̄=0.51,

while in the latter case we obtain T̄=0.48. The main panel repre-
sents the log-log plot of P�T�, while the inset represents the semi-
logarithmic plot including the tail part of the distribution. In all
cases, the computed P�T� exhibits a down-bending behavior, in
sharp contrast to Ref. �24�. The reason for this deviation is dis-
cussed in the text.
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FIG. 9. �Color online� The time correlation function of the 2D
long-range BK model between large events of �c=5 �main shock�
occurring at time t=0 and events of arbitrary sizes, dominated in
number by small events, occurring at time t for the cases of 

=10 and 30. The parameters l and 	 are fixed to l=3 and 	=0.01.
Events of arbitrary sizes occurring within 5 blocks from the epicen-
ter of the main shock are counted. The negative time t�0 repre-
sents the time before the main shock, while the positive time t�0
represents the time after the main shock. The average is taken over
all large events with its magnitude ���c=5. The system size is
160�80.
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Figures 11�a� and 11�b� represent the cases of 
=10 in the
supercritical regime and of 
=30 in the near-critical regime.
Insets represent shorter-time behaviors. Computational con-
ditions are taken to be the same as in Figs. 10.

As can be seen from the figures, spatiotemporal seismic
correlations are almost absent after the main shock in both
cases of 
=10 and 
=30. In the present 2D long-range
model, the event frequency hardly changes with distance r
nor with time t even in the supercritical regime, in contrast to
the short-range case where nontrivial spatiotemporal correla-
tions are observed to some extent even after the main shock
�18�.

G. The time-dependent magnitude distribution
before the main shock

In real seismicity, an appreciable change of the B value of
the magnitude distribution has been reported preceding large
earthquakes: Often a decrease of the B value �28–30�, but
sometimes an increase of it �31�. Obviously, a possible
change in the magnitude distribution preceding the main
shock possesses a potential importance in earthquake predic-
tion.

In Figs. 12, we show the “time-resolved” local magnitude
distributions for several time periods before the main shock
for the cases of 
=10 �a� and of 
=30 �b�, with fixing l

=3 and 	=0.01. Only events with their epicenters lying
within five blocks from the upcoming main shock of �
��c=3 are counted here.

As can be seen from Fig. 12�a�, in the supercritical re-
gime, an apparent B value describing the smaller magnitude
region, ��2, becomes smaller as the main shock is ap-
proached. Indeed, the B value is reduced from the all-time
value B�1.33 to B�1.11 here. By contrast, as can be seen
from Fig. 12�b�, an apparent B value hardly changes in the
near-critical regime even when the main shock is ap-
proached. It stays at around B�0.59.

Likewise, one can also study the “time-resolved” local
magnitude distributions after the large event. Seismic events
are quite scarce after the large event, however, as can be seen
from Figs. 9 and 11, i.e., few aftershocks observed. Hence, it
is statistically difficult to obtain the “time-resolved” local
magnitude distributions after the main shock in the present
model.

IV. SUMMARY AND DISCUSSION

Spatiotemporal correlations of the 2D BK model with the
long-range interaction were studied by means of extensive
numerical computer simulations. The long-range interaction,
which takes account of the effect of the elastic body adjacent
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FIG. 10. �Color online� Event frequency before the large event
of ���c=5 �main shock� plotted versus r, the distance from the
epicenter of the upcoming main shock, for several time periods
before the main shock in the 2D long-range BK model. The
frictional-parameter 
 is 
=10 �a� and 
=30 �b� with l=3 and 	
=0.01, each corresponding to the “supercritical” and “near-critical”
regimes. The system size is 160�80. The insets represent similar
plots at shorter times.
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FIG. 11. �Color online� Event frequency after the large event of
���c=5 �main shock� plotted versus r, the distance from the epi-
center of the preceding main shock, for several time periods after
the main shock in the 2D long-range BK model. The frictional-
parameter 
 is 
=10 �a�, and 
=30 �b� with l=3 and 	=0.01, each
corresponding to the “supercritical” and “near-critical” regimes.
The system size is 160�80. The insets represent similar plots at
shorter times.
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to the fault plane, falls off with distance r as 1 /r3. Seismic
properties of the model can be summarized in the form of a
phase diagram shown in Fig. 4. The 2D long-range model
turns out to possess three distinct “phases,” i.e., a small-

near-critical phase, a supercritical phase and a large-
 near-
critical phase.

The long-range BK model is certainly a more faithful rep-
resentation of an earthquake fault than the short-range BK
model. Although some of the properties are more or less
common between in the short-range and in the long-range
models, several important differences exist in several observ-
ables.

Generally speaking, spatial seismic correlations of the
long-range models tend to be suppressed compared with
those of the short-range models. Such a suppression of spa-
tial seismic correlations in the long-range model might intu-
itively be understandable, because the long-range nature of
the interaction serves to smear out the spatial variation.

Most interestingly, it has been found that the magnitude
distribution of the 2D long-range model exhibits a “near-

critical” power-law-like behavior close to the Gutenberg-
Richter law, for a wide parameter range with its B-value
insensitive to the model parameter, B�0.55, in sharp con-
trast to the cases of the 2D short-range model and of the 1D
short-range and long-range models where such a near-critical
behavior is realized only by fine tuning the model parameter
to a special value. Since the GR law is known to be robustly
observed over different fault zones of varying locations and
depths, possibly characterized by varying material param-
eters, the power-law feature of the magnitude distribution
should be a stable attribute of earthquake occurrence, not a
special property requiring a fine tuning of the material pa-
rameter. In that sense, stable occurrence of the near-critical
magnitude distribution over a wide parameter range in the
2D long-range BK model might be of relevance to real seis-
micity. The observed B value, B�0.55 �b�0.83�, is not far
from the one observed in real faults B�2 /3 �b�1�. It
should be noticed that the near-critical magnitude distribu-
tion observed here is not a truly critical one, since, for suf-
ficiently large magnitude, the magnitude distribution falls off
sharply. The apparent power-law-like behavior does not ex-
tend toward larger magnitudes indefinitely.

In real seismicity, there holds an empirical law that the
mean stress drop of an earthquake is nearly constant irre-
spective of the event magnitude. Although in the short-range
BK models, the mean stress drop increases considerably as
the magnitude becomes larger, in the long-range BK models
the mean stress drop hardly depends on the event magnitude
in a wide parameter range. Hence, the long-range BK model
in the near-critical regime has an obvious advantage that it
can reproduce the observed constancy of the stress drop.

Large events of the long-range model usually accompany
foreshocks together with a doughnutlike quiescence as their
precursors, while they hardly accompany aftershocks with
almost negligible seismic correlations observed after the
mainshock. Such absence of postseismic activity correlated
with the mainshock is more prominent in the long-range
model than in the short-range model. Concerning preseismic
activity preceding the main shock, an appreciable change of
the effective B value has occasionally been observed both in
the long-range and short-range models in 2D. The B value is
either increased, decreased or unchanged in 2D, depending
on the system is in the subcritical, supercritical, or near-
critical phase.

In this way, the long-range 2D BK model, which is appar-
ently the most realistic version among the types of the BK
model studied so far, appear to give a reasonable description
of real seismicity in its near-critical regime. The model can
explain the GR-like magnitude distribution with the B value,
B�0.55, stably realized over a rather wide parameter range,
the near independency of the stress drop on the event mag-
nitude and the absence of a characteristic peak in the
recurrence-time distribution of earthquakes, etc. Meanwhile,
characteristic features become most eminent in the super-
critical regime, particularly for large events.

Not all properties of real seismicity, however, are ex-
plained by the model. For example, the Omori law frequently
observed in real seismicity cannot be reproduced in the BK
model. This may suggest that the effects not taken account in
the present model, e.g., processes like the water migration
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FIG. 12. �Color online� The local magnitude distribution of the
2D long-range BK model for several time periods before the main
shock of ���c=3 for the cases of 
=10 �a� and 
=30 �b�, each
corresponding to the “supercritical” and “near-critical” regimes, re-
spectively. Events whose epicenter lies within 5 blocks from the
epicenter of the upcoming main shock are counted. The parameters
l and 	 are fixed to l=3 and 	=0.01. The system size is 160�80.
In �a�, an apparent B value decreases before the main shock, while
in �b� it stays almost unchanged.
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through the crack, the slow chemical process at the fault or
the elastoplasticity associated with the ascenosphere, are im-
portant in realizing the aftershock obeying the Omori law.

In order to make a further link between the BK model and
the real world, we estimate here various time and length
scales involved in the BK model. For this, we need to esti-
mate the units of time and length of the BK model in terms
of real-world earthquakes. Concerning the time unit �−1, we
estimate it via the rise time of large earthquakes, � /�,
which is typically about 10 seconds. This gives an estimate
of �−13 sec. Concerning the length unit L, we estimate it
making use of the fact that the typical displacement in large
events of our simulation is of order one L unit, which in
real-world large earthquakes is typically 5 meters. Then, we
obtain L5 meters. Since the loading rate �� associated
with the real plate motion is typically 5 cm /year, the dimen-
sionless loading rate �=�� / �L�� is estimated to be �
10−9.

In our simulation of the BK model, the doughnutlike qui-
escence was observed before the main shock at the time scale
of, say, t��10−2–10−1. This time scale corresponds to about
1–10 years. In our simulation, the doughnutlike quiescence
was observed in the region only within a few blocks from the
epicenter of the main shock. To give the corresponding real-
world estimate, we need the real-world estimate of our block
size a�. In the BK model, the length scale a� is entirely
independent of the length scale L, and has to be determined
independently. We estimate a� via the typical velocity of the
rupture propagation, la��, which is about 3 km /sec in real
earthquakes. From this relation, we obtain a�3 km. The
length scale associated with the doughnutlike quiescence is
then estimated to be 3–6 km in radius.

Throughout our present simulations, we have assumed the
velocity-weakening friction force. The extent of the velocity
weakening is mainly described by the parameter 
, which
has a dimension of the inverse velocity. The unit of 
−1 is
then estimated to be 1 m /sec. The recent high-velocity
friction measurements indicate that the friction coefficient of
serpentinite drops significantly at the slip velocity of order
0.1–1 m /sec �32�. This roughly corresponds to the 
 value
of order 1�
�10, which is indeed the values of interest
here.

The seismic moment M is approximately given by

M � GDS , �9�

where G is the shear modulus, D is the displacement and S is
the rupture-zone size. The shear modulus G of the crust is
typically about 30 GPa. The moment magnitude m measured
in the mks unit is defined by

m =
2

3
log10 M − 6. �10�

From Eqs. �7�, we can obtain the relation between the mo-
ment magnitude m in real world and the magnitude � in the
BK model as

m � 0.29� + 6.09. �11�

In the BK model, an upper cutoff magnitude �max of the
GR-like behavior is found to be about 6��max�8, which
corresponds to 7.8�mmax�8.4 in real world. Although it is
tempting to speculate that the “interrupted power law” or
“near criticality” observed in our model simulation might
somehow be related to real observation, it is not known
whether there really exists an upper cutoff magnitude in real
seismicity.

In the long-range BK model, the mean stress drop hardly
depends on the event magnitude in the near-critical regime.
In the 2D long-range BK model in the near-critical regime,
the mean stress drop was estimated to be ��1.6. This cor-
responds in the real world the mean stress drop of �80 MPa.
Since the mean stress drop is 1�10 MPa in real seismicity,
the estimated value of the mean stress drop is a bit larger
than but roughly consistent with the real value.

The present study was performed under many assump-
tions, e.g., an earthquake fault is completely flat, material
parameters are homogeneous, there is no depth dependence
in the material parameters, a friction force depends on the
velocity alone, etc. As one of such assumptions, we have
employed a static approximation in our simulation of the
long-range BK model, i.e., we have assumed that the veloc-
ity of the seismic-wave propagation is sufficiently larger than
the rupture velocity. In real earthquakes, however, the rup-
ture velocity is comparable to the shear-wave velocity. Thus,
it is clearly desirable to perform simulations based on a fully
dynamical elastic theory.

In spite of such limitations of the model, our present study
has revealed that the 2D long-range BK model can reproduce
several important aspects of real seismicity. We hope that the
present analysis might give a step toward the fuller under-
standing of the statistical properties of earthquakes.
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APPENDIX A: THE DERIVATION OF THE INTERACTION
BETWEEN TWO ARBITRARY BLOCKS

In this appendix, based on an elastic theory, we derive the
effective interaction between two arbitrary blocks on a fault
plane in the 2D BK model. We begin with the static version
of the representation theorem �33� that represents a displace-
ment in an elastic body induced by a slip on a crack surface
�or a fault plane� as

Un�x� =� �
��

Ui�x��Cijpqnj�x��
�

�xq�
Gnp�x;x��d��,

�A1�

where Un�x� represents a displacement in the nth direction at
a spatial point x= �x1 ,x2 ,x3� in the elastic body, Ui�x�� is a
relative displacement in the ith direction across the fault sur-
face �, nj�x�� is the normal unit vector on the fault surface,
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and Cijpq is an elastic constant. The Green’s function
Gnp�x ;x�� is a displacement in the nth direction at a point
x= �x1 ,x2 ,x3� due to a unit force acting along the pth direc-
tion at a spatial point x�= �x1� ,x2� ,x3��. We assume the fault
surface to be the x1x3 plane which slips only in the x1 direc-
tion. The elastic body is assumed to be isotropic, homoge-
neous, and infinite.

We consider a static version of the Navier’s equation as a
differential equation describing the elastic body

�� + ��
�

�xi
� �Gjn

�xj

 + �

�

�xj
� �Gin

�xj

 = − �in��x1���x2���x3� ,

�A2�

the associated Green’s function being given by

Gnp�x;x�� =
�np

4��

1

R
−

� + �

8���� + 2��
�2R

�xn � xp
, �A3�

R = 	x − x�	 = ��x1 − x1��
2 + �x2 − x2��

2 + �x3 − x3��
2, �A4�

where �np is the Kronecker’s �, and � and � are Lame’s
constants.

The stress tensor �ij is related to the strain tensor �ij via
the Hooke’s law,

�ij = ��kk�ij + 2��ij , �A5�

�kl �
1

2
� �Uk

�xl
+

�Ul

�xk

 . �A6�

Then, we consider the situation where an infinitesimal part of
the fault plane d�� located at �x1� ,0 ,x3�� slips by an amount
U. By using Eqs. �A1� and �A3�, one obtains the stress on
the x1x3 plane �x2=x2�� as

�12�x1 − x1�,0,x3 − x3��

=
��3� + 2��d�

4��� + 2�� � �x1 − x1��
2

R0
5 +

2�

3� + 2�

�x3 − x3��
2

R0
5 �U ,

�A7�

R0 = ��x1 − x1��
2 + �x3 − x3��

2. �A8�

The result means that the stress decays with distance R0 as
1 /R0

3 on the fault plane. Indeed, Maruyama discussed a static
version of the three-dimensional source mechanics of earth-
quakes �34�. The result we have obtained here corresponds to
his result.

Now, we wish to apply Eqs. �A7� and �A8� derived from
an elastic theory to the BK model. First, we discretize the
fault plane into blocks of linear size a�. Second, we regard
U to be a relative displacement between two blocks, i.e.,
U=Ui,j −Ui�,j�, where Ui,j denotes a displacement of a
block at a site �i , j�. Note that, by this choice of U, one has
a vanishing self-interaction, since the relative displacement
with itself always vanishes.

The spring constant K�i , j ; i� , j���Ui,j −Ui�,j���a�2� be-
tween the blocks at a site �i , j� and at �i� , j�� is then given by

K�i, j ;i�, j�� = lx�
2 �i − i��2

r5 + lz�
2 �j − j��2

r5 , �A9�

lx�
2 =

��3� + 2��a�

4��� + 2��
, �A10�

lz�
2 =

2�2a�

4��� + 2��
, �A11�

r = ��i − i��2 + �j − j��2. �A12�

The dimensionless interblock interaction is then given by

�lx
2 �i − i��2

r5 + lz
2 �j − j��2

r5 
�ui,j − ui�,j�� , �A13�

lx
2 =

lx�
2

kp
=

��3� + 2��a�

4��� + 2��kp
, �A14�

lz
2 =

lz�
2

kp
=

2�2a�

4��� + 2��kp
, �A15�

where kp is the spring constant introduced in Sec. III, and ui,j
is a dimensionless displacement defined in Sec. III.

Similarly, for the long-range 1D BK model, we can obtain
the interaction K�i ; i�� between two arbitrary blocks at site i
and i�. In the long-range 1D BK model, we have assumed the
fault and the elastic body to be a rigid body in the x3 direc-
tion. In this case, a static version of the Navier’s equation
may be written as

�� + ��
�

�xi
� �Gjn

�xj

 + �

�

�xj
� �Gin

�xj

 = − �in��x1���x2� ,

�A16�

the associated Green’s function being given by

Gnp�x;x�� = −
�np

2��
ln R +

� + �

8���� + 2��
�2�R2�ln R − 1��

�xn � xp
,

�A17�

R = 	x − x�	 = ��x1 − x1��
2 + �x2 − x2��

2. �A18�

By using Eqs. �A1� and �A13�, one obtains the stress on the
x1x3 plane �x2=x2�� as

�12�x1 − x1�,0� =
��� + ��d�

��� + 2��
1

�x1 − x1��
2U . �A19�

Then, after the block discretization and the replacement
U=Ui−Ui�, the spring constant defined by
K�i ; i���Ui−Ui���a�� is obtained as

K�i;i�� = l�2 1

	i − i�	2
, �A20�

l�2 =
��� + ��a�

��� + 2��
. �A21�

The dimensionless interblock interaction is then given by
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l2 1

	i − i�	2
�ui − ui�� , �A22�

l2 =
l�2

kp
=

��� + ��a�

��� + 2��kp
. �A23�

APPENDIX B: THE 1D BK MODEL WITH THE
LONG-RANGE INTERACTION

In this appendix, we show some of the results of our
numerical simulations on the 1D BK model with the long-
range interaction decaying as 1 /r2.

Typical behaviors of the magnitude distribution are shown
in Figs. 1 for the case of l=3 and 	=0.01. Figures 13�a� and
13�b� exhibit R��� for smaller and larger 
, respectively. The
peculiarity of the 1D long-range BK model is that, for suffi-
ciently small values of 
�0.6, only one-block events occur
under periodic boundary condition in the steady state real-
ized after transients. Under free boundary condition, on the
other hand, such an exclusive occurrence of one-block events
does not arise for any 
. We note here that the behavior for
smaller 
 is rather sensitive to the choice of the time discreti-
zation t. In the region of smaller 
, we need to take t as
small as 10−5 to obtain stable results. Otherwise, totally dif-
ferent behaviors would sometimes arise.

In the range of 0.7�
�1, events involving more than
one block begin to occur, where the associated R��� exhibits
a “subcritical” behavior bending down rapidly at larger mag-
nitudes, as can be seen from Fig. 13�a�. As 
 is increased,
weights of larger events tend to increase gradually, and at

=1, R��� exhibits a near straight-line “near-critical” behav-
ior close to the GR law behavior.

As 
 is increased further beyond 
=1, R��� develops a
characteristic peak and exhibits a “supercritical” behavior,
deviating from the GR law at larger magnitudes ���̃�1,
while it still exhibits a near straight-line behavior corre-
sponding to the GR law at smaller magnitudes ���̃. As 
 is
further increased, the peak at a larger magnitude becomes
less pronounced, and at 
�15, R��� exhibits a near-critical
behavior again without a characteristic peak. For 
�15,
R��� exhibits a subcritical behavior, rapidly bending down at
larger magnitudes. Finally, events involving more than one
block suddenly disappear. In the range of 
�24, only one-
block events occur. As in the case of smaller 
, we need to
take the time discretization t sufficiently small in order to
correctly reproduce such a behavior in this regime of larger

.

While the magnitude distributions presented here are the
first data on the 1D BK model with the 1 /r3 long-range
interaction, we wish to make some comparison with the ear-
lier data for the related 1D BK models. The magnitude dis-
tribution of the 1D short-range �nearest-neighbor� BK model
was studied by several authors, including the earlier calcula-
tion of Carlson, Langer, and collaborators �5,6� as well as of
our own �18�. The data of Refs. �5,6� corresponded to the
“supercritical” regime �
=2.5,3, and 4� and the “near-
critical” regime �
=1�. Our present data are qualitative simi-
lar to those of Refs. �5,6� in these regimes, though the GR-
like behavior at smaller magnitudes, i.e., the linearity of the
R��� curve, seems less pronounced in our present case and in
Ref. �18� than in Refs. �5,6�. This is due to the different
choice of the l value: Carlson et al. took l to be large 6–14,
while we mostly choose l=3 here and in Ref. �18�.

By contrast, if we compare our present R��� for the 1 /r3

long-range BK model with the one obtained in Refs. �22,23�
for the mean-field-type long-range BK model, there exists
some appreciable qualitative difference. Namely, even in the
“supercritical” regime of 
=2 and 2.5, the magnitude distri-
bution of Refs. �22,23� exhibits no characteristic peak at a
larger magnitude, but rather exhibits a down-bending
“subcritical”-type behavior. In Refs. �22,23�, a characteristic
peak in R��� is discernible in the region of smaller 
 �

=0,0.5� where we have observed here either “one-block
events only” behavior or “subcritical” behavior without a
characteristic peak. We have checked that this qualitative dif-
ference is not due to the different choice of the l value in the
two calculations. Thus, the behavior of the magnitude distri-
bution appears to differ substantially between in the mean-
field-type long-range model and in the 1 /r3 long-range
model.

In Fig. 14, we summarize the behavior of R��� of the 1D
long-range BK model in the form of a “phase diagram” in
the frictional-parameter 
 versus the elastic-parameter l
plane for the case of 	=0.01. The phase diagram consists of
five distinct regimes, two of which are “one-block events”
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FIG. 13. �Color online� The magnitude distribution R��� of
earthquake events of the 1D long-range BK model for the param-
eters l=3 and 	=0.01. �a� represents R��� for smaller values of the
frictional parameter 0�
�5, while �b� represents R��� for larger
values of the frictional parameter 5�
��. The system size is N
=800.

SIMULATION STUDY OF EARTHQUAKES BASED ON THE… PHYSICAL REVIEW E 77, 051123 �2008�

051123-13



regimes, two are “subcritical” regimes and one is a “super-
critical” regime. The transition between the small-
 subcriti-
cal regime and the supercritical regime appears to be con-
tinuous �gradual�, in contrast to the one of the 2D long-range
model. The transition between different “phases” is primarily
dictated by the 
 value. Since the “phase boundary” in Fig.
14 has a finite slope in the 
-l plane, one can also induce the
transition by increasing the l value for a fixed 
.

In the mains panels of Figs. 15�a�–15�c�, we show the
magnitude dependence of the mean displacement, the mean
number of failed blocks and the mean stress drop of the 1D
long-range BK model for various values of 
. In the insets,
we show the system-size dependence of each quantity for the
case of 
=1.

As can be seen from Figs. 15�a� and 15�b�, the data might
roughly be grouped into three different categories, each cor-
responding to the small-
 subcritical regime, the supercriti-
cal regime and the large-
 subcritical regime, although the
transition between these behaviors is rather gradual. As com-
pared with the corresponding 2D models, including both the
short-range model studied in �18� and the long-range model
studied in Sec. III, the scaling property is much more ob-
scured here in 1D. The data in the subcritical regimes do not
collapse on top of each other, nor exhibit a straight-line
power-law-like behavior.

As can be seen from Fig. 15�c�, the mean stress-drop of a
seismic event �̄ hardly depends on its magnitude � except
for large earthquakes. There is even a tendency that the mean
stress drop becomes more independent of the event magni-
tude as one studies larger systems �see the inset�. Similar
independence is also observed in the 2D long-range model in
Sec. III, as well as in Ref. �23� for the mean-field-type 1D
long-range model, and might be contrasted to the property of
the corresponding short-range model where the mean stress-
drop exhibits more pronounced magnitude dependence �18�.

We have also computed the local recurrence-time distri-
bution P�T� for events of their magnitude ���c. The local

recurrence time T is defined by the time passed until the next
event occurs with its epicenter lying in a vicinity of the pre-
vious event within distance of r=30 blocks from the epicen-
ter of the previous event. The behavior of the computed local
recurrence-time distribution is qualitatively similar to the one
of the 2D long-range model given in Sec. III; an exponential

l
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10
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FIG. 14. The phase diagram of the 1D BK models with the
long-range interaction in the frictional-parameter 
 versus elastic-
parameter l plane. The parameter 	 is set to 	=0.01. To draw a
phase diagram, the parameter range 0�
�� and 1� l�10 is
studied by simulations.
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FIG. 15. �Color online� The magnitude dependence of the mean
displacement �a�, the mean number of failed blocks �b�, and the
mean stress drop �c� of each seismic event of the 1D long-range BK
model. In the main panels, the frictional-parameter 
 is varied with
fixing the system-size N=800, while in the insets the system-size N
is varied for 
=1. The parameters l and 	 are fixed to l=3 and 	
=0.01.

TAKAHIRO MORI AND HIKARU KAWAMURA PHYSICAL REVIEW E 77, 051123 �2008�

051123-14



tail at longer T, with or without a characteristic peak at
shorter T in the supercritical or in the subcritical regimes,
respectively.

One case of interest in the 1D model might be the 
=1
near-critical case located at the phase boundary between the
small-
 subcritical regime and the supercritical regime, since
such a region is absent in the corresponding 2D model due to
the discontinuous nature of the transition. Thus, in Fig. 16,
we show on a log-log plot the computed P�T� for the case of

=1, with fixing l=3 and 	=0.01, for various values of the
magnitude threshold �c. As can be seen from the figure, P�T�
tends to exhibit a power-law-like behavior at larger T as the
magnitude threshold �c is taken smaller. The associated ex-
ponent is estimated to be about �2.6. This suggests that, at

=1, the occurrence of small events has a critical feature,
while such a critical feature is weakened for larger events.
Such a critical feature was not seen in the recurrence-time
distribution of the 2D long-range model studied in Sec. III.
We note that, even in 1D, such a critical P�T� is realized only
at 
=1. For other values of 
, P�T� robustly exhibits an
exponential tail at longer T �not shown here�.

We have also calculated various spatiotemporal correla-
tion functions for the 1D long-range BK model, most of
which show behaviors qualitatively similar to the ones ob-
served for the 2D long-range BK model. Among them, we
show in Figs. 17 the “time-resolved” local magnitude distri-
butions for several time periods before the large event for the
cases of 
=1 �a�, 
=5 �b�, and 
=15 �c�, with fixing l=3
and 	=0.01. Only events with their epicenters lying within
30 blocks from the upcoming main shock is counted here.
We define the main shock as a large event of ���c=3.

For the case of 
=1, as shown in Fig. 17�a�, an apparent
B value describing the smaller magnitude region ��−1 be-
comes smaller from the all-time value B�0.79 to the short-

time value B�0.67 as the main shock is approached. Such a
decrease of the B value is opposite to the one observed in the
corresponding 1D short-range model at 
=1 where the B
value becomes larger as the main shock is approached
�16,17�.

For the case of 
=15, by contrast, an apparent B value
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FIG. 17. �Color online� The local magnitude distribution of the
1D long-range BK model for several time periods before the main
shock of ���c=3, for the cases of 
=1 �a�, 
=5 �b�, and 
=15
�c�. Events whose epicenter lies within 30 blocks from the epicenter
of the upcoming main shock are counted. The parameters l and 	
are fixed to l=3 and 	=0.01. The system size is N=800. In �a�, the
apparent B value decreases before the main shock, while, in �c�, it
increases before the main shock.
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FIG. 16. �Color online� The local recurrence-time distribution
function P�T� of the 1D long-range BK model of the frictional
parameter 
=1, with varying the magnitude threshold �c. The main
panels represent the log-log plot of P�T� and the insets represent the
semilogarithmic plots including the tail part of the distribution. The

mean recurrence time T̄ is T̄=0.000916,0.369, and 19.7, respec-
tively, for �c=−� ,0 and 3.
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describing the smaller magnitude region becomes larger as
the main shock is approached: See Fig. 17�c�.

For the case of 
=5, the time development of the magni-
tude distribution exhibits a somewhat different behavior as

shown in Fig. 17�b�. As the main shock is approached, the
magnitude distribution R��� is developed from the super-
critical all-time behavior to the near-critical straight-line be-
havior characterized by a slope B�1.11.
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